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Abstract1

Active stormwater control may play an important role in mitigating urban flooding which2

is becoming more common with climate change and sea level rise. In this paper we describe3

and demonstrate swmm mpc, software we developed for running model predictive control4

(MPC) for urban drainage systems using open source software (Python and the EPA Stormwa-5

ter Management Model version 5 (SWMM5)). swmm mpc uses an evolutionary algorithm as6

an optimizer and supports parallel processing. In the demonstration case, the control policy7

found by swmm mpc for two storage units achieved its objectives of 1) practically eliminat-8

ing flooding and 2) maintaining the water level at the storage units close to a target level.9

Although the current swmm mpc workflow was feasible for a simple model using a desktop10

PC, a high-performance computer or cloud-based computer with more computational cores11

is needed for a more complex model.12

Highlights13

• Open-source implementation of model predictive control for EPA-SWMM5, swmm mpc14

• Evolutionary algorithm used to select effective control policy at each time step15

• Parallel processing of genetic algorithm significantly reduces run-time16

• Control policy from swmm mpc minimizes flooding and maintains target water level17

• Computational cost measured for personal, high-performance, and cloud-based com-18

puters19
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1 Introduction20

Researchers have predicted that storm intensity will increase on average due to climate change21

(Berggren et al., 2012; Neumann et al., 2015). Coastal cities have an additional challenge as22

sea levels rise which makes it more difficult to drain storm runoff from streets. Coastal cities23

have already experienced increased flooding from high tidal events alone (Sweet and Park,24

2014).25

More intense storms and rising sea levels will put greater stress on urban drainage sys-26

tems necessitating changes for urban drainage systems to perform at current levels. One pos-27

sible adjustment is to make capital improvements such as increasing pipe size or construct-28

ing new storage units. Another option is to convert drainage systems from passive, gravity29

driven systems to active or “smart” systems (Kerkez et al., 2016). Active systems can in-30

crease performance of a urban drainage system at a lower cost than traditional capital im-31

provements (Meneses et al., 2018). Actively controlling an urban drainage system does not32

increase the actual capacity of urban drainage infrastructure, but rather more efficiently uses33

the existing infrastructure, increasing its effective capacity. For example, one part of an ac-34

tive urban drainage system could be a valve at the outlet of a retention basin which can be35

automatically opened or closed based on system conditions and forecasts. With this setup,36

the valve could be closed more during a storm which would utilize the available storage bet-37

ter than would have been possible without the valve.38

For an active urban drainage system to achieve its objective (e.g., minimize flooding, re-39

duce combined-sewer overflows), an effective management strategy is required. Management40

decisions for a urban drainage system include which actuators (e.g., valves and pumps) in41

the system should change, when to change them, and to what setting. We refer to these de-42

cisions as a control policy (Vrabie et al., 2009; Mayne et al., 2005; Langson et al., 2004). An43

effective control policy for an active urban drainage system may depend on a number of fac-44

tors such as antecedent moisture conditions, expected intensity and duration of oncoming45

rainfall, current water levels in the system, the condition of the drainage infrastructure, and46

other factors (e.g., tide levels in tidally influenced urban drainage systems).47
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A common approach for determining an effective control policy is model predictive con-48

trol (MPC) (Camacho and Bordons, 2007). MPC has been used effectively in many control49

applications including automotive controls (Del Re et al., 2010), HVAC (heating, ventilation,50

and air conditioning) (Afram and Janabi-Sharifi, 2014), and other industrial applications51

(Qin and Badgwell, 2003). MPC has also been used effectively in urban drainage applica-52

tions (Puig et al., 2009; Cembrano et al., 2004; Schütze et al., 2004; Gelormino and Ricker,53

1994). In MPC, a process model is used to simulate the physical system and evaluate alter-54

native control policies. Forecast data can be used as input for the simulation. During the55

control period, on-line optimization is performed, meaning that an optimal control policy is56

found and implemented at each time step (Camacho and Bordons, 2007).57

While effective for finding effective control policies, implementing MPC for a urban drainage58

system is non-trivial due to the dynamics within the system. The fundamental governing59

equations for modeling urban drainage systems are the St. Venant equations which, when60

considered fully, are non-linear (Tayfur et al., 1993). This makes finding an optimal control61

policy for urban drainage systems challenging using MPC (Darsono and Labadie, 2007). To62

address this dilemma, two alternative approaches are found in the literature. The first is to63

simplify the governing equations of the process model to a linear system. This makes the64

optimization problem solvable using well-established procedures such as simplex (Nelder65

and Mead, 1965). Gelormino and Ricker (1994) took the approach of linearizing their sys-66

tem, converting their process model into a linear-time-invariant model to perform MPC for a67

large combined sewer system in Seattle, Washington USA.68

The second approach is to retain the non-linear St. Venant equations and use a meta-69

heuristic to find the best control policy at each time step. In this approach, a true optimiza-70

tion procedure is not possible because the system remains non-linear; instead, a metaheuris-71

tic (e.g., an evolutionary algorithm (EA)) can be used (Gandomi et al., 2013). The use of72

a metaheuristic precludes the possibility of determining a guaranteed optimal control pol-73

icy and is typically computationally expensive. The advantage of this approach, however, is74

that the non-linear governing equations in the process model are retained. This approach75

was taken by Heusch and Ostrowski (2011) who used a dynamically dimensioned search for76
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finding the best control policy and the United States Environmental Protection Agency’s77

Stormwater Management Model Version 5 (EPA-SWMM5), which numerically solves the St.78

Venant equations, as their process model (Huber et al., 2005). Similar to Heusch and Os-79

trowski (2011), we have selected to follow the second approach so that the non-linearities in80

the process model can remain, and to leverage EPA-SWMM5 as the process model.81

EPA-SWMM5 is an attractive choice as a process model for urban drainage systems for82

several reasons. EPA-SWMM5 is in the public domain making it free of charge and its source83

code is open-source making it customizable. The model simulates a wide variety of urban84

drainage structures including active controls such as orifices with variable openings and pumps.85

EPA-SWMM5 has been used in many research applications, as well as in engineering prac-86

tice to model urban drainage systems (Burger et al., 2014). Notwithstanding the wide use87

and utility of EPA-SWMM5 for modeling urban drainage systems, and the established util-88

ity of MPC as a successful approach for determining effective control policies, to our knowl-89

edge, there is currently no software available for performing MPC using EPA-SWMM5. Al-90

though Heusch and Ostrowski (2011) developed software that implements MPC with EPA-91

SWMM5, that software was closed-source and is no longer available.92

This study advances the work done by Heusch and Ostrowski (2011) by creating an open-93

source implementation of MPC for EPA-SWMM5, swmm mpc, and by demonstrating swmm94

mpc’s parallel computing capabilities. By making swmm mpc open source, other researchers95

will be able to use, improve, and build from the source code. Although, the software writ-96

ten by Heusch and Ostrowski (2011) supported the use of parallel computing, this capability,97

which is critical to the usability of such software given its associated computational costs,98

was never demonstrated or tested in the literature.99

swmm mpc was written in the Python programming language. Several third-party Python100

packages were necessary for the success of this project including pyswmm (https://github.101

com/OpenWaterAnalytics/pyswmm) and the Distributed Evolutionary Algorithms for Python102

(DEAP) (https://github.com/DEAP/deap). To evaluate swmm mpc, it was applied to a103

use case model with two active control devices. The swmm mpc results were compared to104

the results from a rules-based approach and a scenario with no active control. The swmm105
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mpc software was run on a desktop personal computer (PC), a high-performance computer106

(HPC), and a rented, cloud-based machine to demonstrate and test the parallel processing107

capability of the software.108

The remainder of this paper describes the methods used to implement swmm mpc in-109

cluding a description of the MPC workflow and the interaction and role of the third-party110

Python libraries. The use case model is then described and the results of the evaluation are111

presented and discussed. As part of the results and discussion, the benefits of parallelization112

and the use of a high-performance and cloud-based computing for running swmm mpc are113

quantified and discussed.114

2 Methods115

2.1 Overview of MPC for urban drainage systems116

MPC for a urban drainage system consists of three main components as shown in Figure 1.117

The first component is the physical system, including the system states and system controls.118

The system states include hydraulic states such as water levels at system nodes and flow119

rates in system pipes, and hydrologic states such as watershed soil moisture and runoff. In120

a real system, these states would come from real-time sensors. The system controls are actu-121

ators that accept and implement the settings resulting from the MPC process at each time122

step.123

The second component in MPC is a process model used to simulate the future states of124

the urban drainage system. The process model uses the states read from the urban drainage125

system as its initial states. The process model also takes future model inputs such as rain-126

fall or tide level. Given the current state of the system and future disturbances, the process127

model is used to evaluate the effectiveness of control policy candidates.128

A control policy consists of one setting for each actuator, for each control time step, for129

the duration of the control horizon. An individual setting can be a number as would be the130

case for a valve where the number would correspond to the percent open of the valve. An in-131

dividual setting can also be a binary setting as would be the case for a pump that can either132
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be on or off. As an example, consider a system with a variably opening valve and an on-off133

pump with a control horizon of three hours and a control time step of 15 minutes. A con-134

trol policy for this system would consist of two arrays, an array of numbers between 0 and 1135

to specify the percent open of the valve should be, and an array of “on” or “off” to specify136

the setting of the pump. Both arrays would have 12 settings (four settings per hour for three137

hours).138

To evaluate the effectiveness of a given control policy, the settings in the policy are ap-139

plied to simulated actuators in the process model and the process model simulation is exe-140

cuted. At the end of the simulation, a cost is determined for the policy. The cost is based on141

a user-defined cost function. In this study, we consider mainly the cost resulting from flood-142

ing but other costs could be considered withing this general framework including the costs of143

combined sewer overflows (CSO) and water quality. The cost may also be a factor of other144

process model outputs such as deviation from target water levels at certain points (Schütze145

et al., 2004).146

The third component of MPC for a urban drainage system is an optimization routine to147

determine the best control policy for the system. Using the process model to assign a cost to148

a given control policy, the optimization procedure seeks to find the control policy that incurs149

the smallest cost. If the process model is linear, a true optimum can be found using tradi-150

tional optimization procedures like simplex (Nelder and Mead, 1965). If the process model is151

non-linear, other approaches must be taken such as using a metaheuristic to find an effective152

control policy (Gandomi et al., 2013).153

In summary, the chronological workflow for MPC for a urban drainage system is: 1) sys-154

tem states are read from the physical system, 2) using the system states as initial conditions155

and future disturbances as input, a process model is used to evaluate control policies, 3) the156

best control policy is selected through an optimization procedure, and 4) the best control157

policy is implemented in the real system. Although the best control policy is obtained for158

the entire control horizon, only the first step in the control policy is used since the procedure159

re-optimizes at every control time step.160
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Figure 1: Main components of MPC in swmm mpc system

2.2 MPC for SWMM5: swmm mpc161

In this section we describe the implementation of the parts of MPC using Python and SWMM5.162

This implementation was done in the swmm mpc Python package and uses the standard163

EPA-SWMM5 and an enhanced version of SWMM5 developed by Open Water Analytics,164

OWA-SWMM5. The software simulates online MPC for an urban drainage system using165

SWMM5 as the process model and as the simulated physical system. The current system166

could also be used in an offline mode where a control policy for a forecast storm event is167

found beforehand.168

2.2.1 Simulated urban drainage system: OWA-SWMM5 and pyswmm169

SWMM5 was used to simulate the physical urban drainage system. For this, an enhanced170

version of SWMM5, OWA-SWMM5 (https://github.com/OpenWaterAnalytics/Stormwater-171

Management-Model), was used via an accompanying Python library, pyswmm (https://172

github.com/OpenWaterAnalytics/pyswmm). Both OWA-SWMM5 and pyswmm were de-173

veloped and are distributed by Open Water Analytics. Compared to EPA-SWMM5, OWA-174

SWMM5 contains additional C functions that are accessed by pyswmm.175

OWA-SWMM5 and pyswmm provide three key functionalities needed to simulate the176

online optimization procedure required by MPC. First, unlike when a simulation is run via177
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EPA-SWMM5, when using pyswmm, custom Python routines can be executed between each178

time step of the simulation. This is critical to swmm mpc because at each time step in the179

workflow three processes occur: 1) the states from the simulated urban drainage system need180

to be read and transferred to the process model; 2) the metaheuristic needs to be run; and181

3) the best policy found by the metaheuristic needs to be implemented in the simulated ur-182

ban drainage system. Using pyswmm, Python code can be run to perform each of these pro-183

cesses at each control time step.184

Second, pyswmm enables the transfer of system states at each time step from the simu-185

lated urban drainage system to the process model. This is accomplished through a hotstart186

file. A SWMM5 hotstart file contains all of of the hydraulic and hydrologic states of the187

model at the time in the simulation when the hotstart file is saved. When a hotstart file is188

read into a simulation, that simulation’s initial hydraulic and hydrologic states are the states189

represented in the hotstart file. This functionality is well-suited to transfer the states of the190

simulated urban drainage system to the process model in the swmm mpc workflow.191

Using EPA-SWMM5, a hotstart file can be saved only at the end of a simulation. This192

is a critical limitation because in MPC the system states need to be transferred at every193

time step. To address this limitation, we added new functionality to OWA-SWMM5 and194

pyswmm to enable hotstart files to be saved at any point in a SWMM5 simulation executed195

using pyswmm. This functionality allowed the system states of the simulated urban drainage196

system to be transferred to the process model at each time step.197

Third, through pyswmm the best control policy found by the metaheuristic can be imple-198

mented at each time step. This is done using pyswmm to change the settings of the actua-199

tors in the model during the simulation. When a simulation is initialized in pyswmm, each200

object in a SWMM5 model (every node, link, subcatchment, etc.) can be read into a Python201

object via its element ID as defined in the SWMM5 input file. Each of these Python objects202

has attributes that can be read (e.g., depth at a node and flow in a link). Actuators in the203

model read into Python objects also have the “target setting” attribute that can be written.204

To implement a control setting for an actuator via pyswmm, its “target setting” is set to the205

first setting in the best control policy.206
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2.2.2 Process model: EPA-SWMM5207

In addition to representing a real urban drainage system, SWMM5 was used as the pro-208

cess model. However, in contrast to using OWA-SWMM5 to simulate the physical urban209

drainage system, the standard EPA-SWMM5 was used as process models. This was neces-210

sary because the current version of pyswmm cannot run more than one simulation at a time.211

This is a functionality needed in swmm mpc because at each time step during the simulation212

of the urban drainage system, at least one process model simulation is run in a predictive213

fashion to evaluate control policy candidates. EPA-SWMM5, unlike pyswmm, supports mul-214

tiple simulations being executed simultaneously.215

2.2.3 Active controls in EPA-SWMM5216

EPA-SWMM5 simulates the active control of certain hydraulic structures including pumps,217

orifices, and gates. Each of these structures has a setting that can be assigned. For exam-218

ple, the setting for an orifice is a decimal number between 0 and 1 which corresponds to the219

percent open of the orifice (e.g., a 0.5 setting would mean the orifice was 50%). The user can220

also define an amount of time for a structure to implement a change in setting. This “time221

to change” parameter in EPA-SWMM5 represents the delay seen in reality for changing an222

actuator’s setting.223

Changing controls during an EPA-SWMM5 simulation is done using one or more control224

rules (see example in Figure 2). A control rule is specified in the SWMM5 input file before225

the simulation begins and consists of four parts. The first two parts of a control rule are the226

rule name and the condition. In the example, the rule name is “R1”. The condition is “IF227

NODE J1 DEPTH <2”, meaning that the program will check if the depth at the node with228

the ID of “J1” is less than 2 (the units being defined globally in the model input file as feet229

or meters). In EPA-SWMM5 the condition can be the state at any link or node and can also230

be related to global simulation states such as the model simulation time. The third part of231

a control rule defines which structure(s) should change if the specified condition is met. In232

the example the structure that will change is “ORIFICE R1” (note that the name of the rule233
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Figure 2: Example of a control rule in SWWM5

Figure 3: Example implementation of control policy as set of control rules

and of the orifice are the same coincidentally and can be different). Finally, the fourth part234

of the rule defines the setting to which the structure should change. In the example, this is235

“0.6”, meaning that if the condition is met, the orifice should be set to 60% open.236

In swmm mpc a control policy is a time series of control settings (one control setting per237

control time step for the control duration). This is implemented in EPA-SWMM5 as a set of238

control rules. In the current version of swmm mpc, only the control of orifices is supported239

while support for other controls such as pumps can be added in future versions. Since a240

control policy in MPC is a time series, each control rule’s condition is based solely on the241

model’s simulation time in decimal hours. For example, Figure 3 shows a control policy of242

four settings (0.2, 0.4, 0.5, and 0.2) for “ORIFICE R1” at a 15-minute control time step im-243

plemented as control rules. This text would be written to the EPA-SWMM5 process model244

input file under the “CONTROLS” heading.245

2.2.4 Metaheuristic: evolutionary algorithm246

Because we used EPA-SWMM5 as a black-box process model, a metaheuristic was used in247

place of a true optimization procedure to find an effective control policy at each time step248
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in the MPC run. We chose an evolutionary algorithm (EA) for the metaheuristic since it249

has been shown to be successful in other urban drainage control applications (Zimmer et al.,250

2015, 2018) and it’s inherent propensity for parallelization Maier et al. (2014). An EA be-251

gins with an initial population of individuals where, in our case, each individual is a control252

policy. A fitness score (or conversely a cost) is assigned to each individual in the population253

and certain individuals are selected to survive into the next generation based on their fit-254

ness score. Mechanisms for improving the fitness of the individuals from one generation to255

the next mimic natural processes including cross-over and mutation (Maier et al., 2014). The256

process of selection and improvement is repeated from generation to generation until a stop-257

ping criteria is met. Common stopping criteria include a user-defined number of generations258

or an acceptably low rate of improvement from one generation to the next. The use of an259

EA requires several user-defined parameters including the number of individuals in the ini-260

tial population, the cross-over rate, the mutation rate, and the stopping criteria.261

Since the EA searches for the policy that incurs the minimum cost, the way in which a262

cost is assigned to each individual control policy is very influential on the EA’s effectiveness.263

In swmm mpc, the cost of a control policy is determined using the process model and a cost264

function. First, each individual control policy is implemented in the process model input265

file as a set of control rules as described above. Once the control policy is implemented, the266

EPA-SWMM5 model is executed. Elements of the model output resulting from the process267

model execution become input for the cost function. The cost function used in swmm mpc is268

Cost = α(a · v) + β(b · d) (1)

where a, v, b, d are each 1-dimensional vectors, and α and β are scalers. The members of269

a are user-defined weight values for flooding at any node in the system and the members of270

v are the magnitude of flooding at each node as calculated by the process model. The mem-271

bers of b are user-defined weights for deviation from user-defined target water levels at each272

node in the system and the members of d are the average absolute deviations from target273

water levels again as calculated by the process model. α, and β, are user-defined constants274
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used to give overall weights to flooding costs compared to deviation costs.275

We intentionally made this cost function flexible so that users can customize it to meet276

their objectives which may vary between use cases. A cost for flooding is obviously impor-277

tant as that is a major concern for many communities and the prevention of which is one of278

the main purposes for urban drainage systems. We also included a cost from deviations for279

target water levels because, in certain cases, it is desirable to maintain water levels close to a280

certain depth. For example, it may be important to keep a certain amount of water in a re-281

tention pond for aesthetic and/or ecological purposes. Although the cost function is flexible,282

when implemented in swmm mpc, the user need only define what is important to the spe-283

cific application. For example, default for a is a vector of all 1’s. When one node is specified,284

the weight of any unspecified node becomes zero. The default for b is all zeros, since the user285

has to specify a target depth for a given node.286

To execute EAs we used the Distributed Evolutionary Algorithms for Python (DEAP)(https:287

//github.com/DEAP/deap) library. An advantage of EAs is that they can easily be run in288

parallel since they performs many independent evaluations (Maier et al., 2014). In DEAP289

parallel processing is supported through integration with the built-in “multiprocessing” Python290

library.291

2.2.5 swmm mpc Workflow292

The MPC workflow in swmm mpc was implemented using three main Python functions (see293

Figure 4). The function in the workflow called by the user is “run swmm mpc.” This func-294

tion runs the MPC workflow and calls the two other main functions. “run swmm mpc” takes295

13 user inputs as shown in Table 1. Through these inputs, the user specifies the model input296

file to that represents the urban drainage system, the control inputs (i.e., which controls to297

find a policy for, the control time step, and the control horizon), and EA parameters (e.g.,298

number of generations, cost function parameters).299

The most complex of the user-supplied arguments are “target depth dict” and “node300

flood wgt dict” (see Snippet 1 for examples). These two arguments define the a and b vari-301

ables in the cost function. Additionally, the “target depth dict” argument is used to deter-302
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mine d. These arguments map from Python data structures to the mathematical variables303

in the cost function. The “target depth dict” argument is a dictionary whose keys are node304

ids and whose values are dictionaries. The inner dictionary has two keys, the target depth of305

the node and the weight of the cost for deviations from the weight at the node. In Snippet306

1, the “target depth dict” specifies that the target depths of Nodes St1 and St2 are 4.0 and307

3.5, respectively. The weights are also specified: deviation from the target depth at Node308

St1 will be twice as costly as deviation from Node St2. The “node flood wgt dict” is a sim-309

pler dictionary, the keys of which are node ids and the values are weights. In Snippet 1, the310

“node flood weight dict” specifies that flooding at Node J3 is five times costlier than flood-311

ing at Node St1. Note that if one or more node is included in the “target depth dict” or the312

“node flood wgt dict”, other nodes are not included in the cost calculation (in terms of the313

cost function, the corresponding weights in a and b are zero). This is shown in Snippet 1,314

the weight of deviations from a water level at Node J3 and the weight of flooding at Node315

St2 would both be zero since they are not included in the dictionaries.316

Snippet 1: Examples of “target depth dict” and “node flood wgt dict”

target_depth_dict = {"Node St1": {"target": 4.0, "weight": 2},317

"Node St2": {"target": 3.5, "weight": 1}}318

319

node_flood_weight_dict = {"Node J3": 1, "Node St1": 0.2}320
321

In the “run swmm mpc” function, the SWMM5 model simulating the urban drainage sys-322

tem is run step by step via pyswmm. At the beginning of the simulation, the SWMM5 input323

file representing the urban drainage system is copied. This copy serves as the input file used324

for the process model. To ensure that the states and simulation periods of process model325

remain in sync with the simulated urban drainage system, at each time step a hotstart file326

from the urban drainage system simulation is saved and then used as the initial states for327

the process model. The process model’s simulation start date and time are also updated to328

match the urban drainage system simulation’s current date and time.329

Once the process model’s simulation start date and time is same as the simulated ur-330
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ban drainage system and the hotstart file of the simulated urban drainage system is saved,331

the “run ea” function is called. The “run ea” function initiates the EA which starts by cre-332

ating an initial population of individual control policies. In our case, an individual is a 1-333

dimensional vector, each member of which is a setting for an individual actuator for one con-334

trol time step. The initial population for the first time step is a group of random individuals.335

For subsequent time steps, elitism is used where the best policy found in the previous time336

step is used to seed the initial population of the current time step.337

The control policies initiated in the “run ea” function are input into the third main func-338

tion, “evaluate”. The evaluate function makes a copy of the process model input file and the339

input hotstart file. To avoid file naming conflicts, a random string is appended to the hot-340

start and input file names. The control policy is then implemented in the newly created in-341

put file by adding corresponding control rules. Once the control policy is implemented in342

the input file, the simulation is executed with EPA-SWMM5. When the simulation run is343

completed, the “evaluate” function parses the output file to determine v and d in the cost344

function. The policy’s cost can then be determined since the remaining cost function pa-345

rameters (α, a, β, and b) are user-defined. The evaluation of an individual control policy is346

independent of all others, therefore, the “evaluate” function is the part of the workflow that347

is parallelized through Python’s “multiprocessing” module.348

Using the cost that has been assigned to each policy, the “run ea” function selects the349

best individuals to retain in the population of policies for the next generation. After the350

user-defined number of generations are complete, the best policy found by the EA is imple-351

mented in the simulated urban drainage system in the “run swmm mpc” function. The pol-352

icy is also saved and used to seed the population of the next time step. Finally, the setting353

for that time step is recorded so that at the end of the simulation, the best control policy for354

the entire simulation time is saved.355

2.3 System demonstration356

To demonstrate the utility and functionality of swmm mpc, three control scenarios were used357

and compared for two cases in which the demonstration model and the cost function param-358
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Table 1: User inputs for “run swmm mpc” function

Parameter name Data type Description Default value

inp file path String File path to
SWMM5 input file
(.inp)

N/A

control horizon Number Control horizon in
hours

N/A

control time step Number Control time step in
seconds

N/A

control str ids List of strings IDs of control struc-
tures to be adjusted

N/A

work dir String Path to directory
where temporary
files will be stored

N/A

results dir String Path to direc-
tory where results
should be stored

N/A

target depth dict Dictionary IDs of nodes and
corresponding tar-
get depths and rela-
tive penalty weights

Null

node flood weight dict Dictionary IDs of nodes and
corresponding rela-
tive penalty weights

Null

flood weight Number Overall weight of
flood penalties

1

dev weight Number Overall weight of
deviation penalties

1

ngen Number Number of genera-
tions that the GA
should perform

7

nindividuals Number Number of individ-
uals in the inital
GA population

100

run suffix String suffix to be ap-
pended to results
file
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Figure 4: Activity diagram of MPC implementation using Python
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Figure 5: Demonstration model schema

eters differed slightly. The computational costs of running swmm mpc were also quanitfied.359

2.3.1 Demonstration model and rainfall event360

The model used to demonstrate swmm mpc (see Figure 5) has two orifices (R1 and R2) that361

control the flow out of two storage units in parallel in the system (St1 and St2, respectively).362

In SWMM5 models, storage units are generic and are used to represent both natural stor-363

age facilities such as a pond as well as man-made facilities such as an underground tank or364

retention pond. The two orifices from the storage units meet and flow through a junction,365

J3, before leaving the sytem through the outfall. For the example use case we used a 2-year,366

12-hour rainfall event for Norfolk, Virginia, a coastal city that experiences frequent flood-367

ing (Mitchell et al., 2013). The rainfall event (see Figure 6) had 78.2 mm of total rainfall368

(Bonnin et al., 2018) with an SCS Type II temporal distribution (Mockus, 2012). The model369

simulation time was 24 hours.370
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Figure 6: Design storm input to use case study

2.3.2 Control scenarios371

Scenario 1: Passive In this scenario there is no active control with the outlets 100%372

open. Two outlets to the storage units were simulated, one at the bottom of the storage373

units, the other is near the top. Water continously leaves the retention pond through the374

lower outlet, and when the water level reaches a certain depth, the water flows out of the375

upper outlet as well to avoid overtopping.376

Scenario 2: Rule-based control For this scenario, a simple logical rule controls the377

orifice openings and therefore the discharge from the storage units. In practice, such rules378

can be based on experience and knowledge gained by local stormwater personnel over time.379

Although, heuristic-based rules alter a dynamic, actuated system, the rules themselves are380

static, meaning that they do not change for the duration of an event. Furthermore, the rules381

do not adjust based on forecast conditions. The rule we chose was to set the percent open382

of the orifices equal to the percent full of the storage units. For example, if one storage unit383

were 30% full, the valve at the outlet would be set to 30% open. This rule was intended to384

minimize flooding by retaining some water so as not to flood the downstream nodes, but re-385

lease enough water to avoid overtopping.386
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Scenario 3: MPC The MPC control policy was found using swmm mpc as described in387

Section 2.2.5 above. One advantage of MPC over the rule-based control is the ability to ad-388

just the actuators based on forecast conditions. For the use cases, we used a control time389

step of 15 minutes and a control horizon of one hour. Therefore, with two controls, a single390

control policy consisted of a vector of eight values (2 controls x 4 control steps per hour x 1391

hour).392

2.3.3 Model and cost function cases393

We implemented and compared the three control scenarios for two cases in which model and394

cost function parameters were slightly different (see Table 2). For the passive and rules-395

based control scenarios, there is only one difference between Case 1 and Case 2. In Case 1,396

the maximum depth of the storage units is 1.52 m (5.00 ft) while in Case 2 the maximum397

depth is 1.37 m (4.50 ft). The maximum depth of the storage units was reduced in Case 2 in398

order to explore the effectiveness of the three scenarios in a more constrained situation.399

For the MPC scenario, there is a difference in the cost function parameters between Cases400

1 and 2. In Case 1, there are two objectives: 1) minimize flooding at the downstream Node401

J3, and 2) minimize deviations from a target water level of 1.22 m (4.00 ft) at the storage402

units. These objectives translated to the a and b parameters of the cost function as a vec-403

tor of zeros except the last member (Node J3), and a vector of zeros except for the first two404

members (St1 and St2), respectively. In this case, to emphasize minimizing flooding at Node405

J3 over minimizing deviations from the target water depths at the storage units, we set the406

cost of flooding weight, α, six times larger than the cost of deviations, β (3 compared to407

0.5). In Case 2, there was only one objective, minimize flooding at Node J3. In this case, a408

is the same as in Case 1, but β is zero since minimizing deviations from a target water level409

is not part of the objective.410

2.3.4 Use of parallel, high-performance, and cloud computing411

The EA used for selecting the best control policy is computationally expensive and therefore,412

some analysis of computational costs for executing the swmm mpc workflow was performed.413
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Table 2: Differences in MPC cost function parameters and storage capacity between two test
cases

Case 1 Case 2

α 3 1
a [0, 0, 1] [0, 0, 1]
β 0.5 0
b [1, 1, 0] N/A

Storage depth at
St1 and St2 (ft)

1.52 m (5.00 ft) 1.37 m (4.50 ft)

Table 3: Specifications of computational resources used for demonstration model

PC HPC GCP

Max. # cores 8 28 64 (tested up to 32)
CPU speed 3.60 GHz 2.4 GHz 2.0 GHz

Processor type Intel i7 Intel Xeon Intel Xeon
RAM 16 GB 128 GB 7-120 GB (depending on # of CPUs)

The wall-clock times for Case 1 (the more complex of the two cases) were compared when414

using a typical personal computer (PC) and the University of Virginia’s high-performance415

computing (HPC) system, Rivanna. Recogizing that many (likely most) municipalities will416

not have HPC resources available to them, we also explored the use of a commercial cloud417

computing service for running swmm mpc. These services, such as Amazon Web Services,418

Google Cloud Platform, or Microsoft Azure, allow users to rent large, powerful computers,419

charging only for the time that the computers are being used. To explore the option of rent-420

ing a cloud-based machine, we also executed Case 1 through Google Cloud Platform (GCP).421

The number of cores available, RAM, and processor speeds of the PC, HPC, and GCP ma-422

chines are listed in Table 3. Case 1 was run with varying number of cores on each platform.423

3 Results and Discussion424

3.1 Results from Case 1 and Case 2425

Figure 7 shows the results from the three control scenarios for Case 1. In the rules-based and426

MPC scenarios, the control policies kept the valves closed more, thus retaining more water427
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in the storage units and preventing flooding at Node J3 (see Figures 7 A and B). The water428

level at St1 reaches much higher values in Scenarios 2 and 3 (max of 1.45 m (4.76 ft) and429

1.38 m (4.54 ft)) compared to Scenario 1 (max of 1.26 m (4.15 ft)). In this case, both rules-430

based control and MPC practically eliminated flooding while in the passive scenario, flooding431

occurred (Figure 7D).432

In addition to practically eliminating flooding in Case 1, the swmm mpc control policy433

was able to maintain the water levels in St1 and St2 near the target of 1.22 m (4.00 ft). Be-434

cause the cost of flooding was weighted more heavily than the cost of deviating from target435

water levels at St1 and St2, the storage units allowed the water levels to exceed the target436

depth. Following the peak of the storm, and therefore the largest risk of flooding, the algo-437

rithm could focus on the less-weightier objective of minimizing deviations from the target438

water levels. Therefore, following the peak of the storm, water was released from the storage439

units until the level reached near the target water level. The final water levels of St1 and St2440

were 1.20 m (3.94 ft) and 1.17 m (3.83 ft), respectively.441

Figure 8 shows the results for Case 2, in which less storage volume is available than in442

Case 1. In Case 2, the rules that completely eliminated flooding in Case 1 were not effective443

and in fact resulted in more flooding than the passive scenario. In both Case 1 and 2, the444

flooding in the passive scenario occurred at Node J3, downstream from the storage units. By445

contrast, in Case 2 the flooding in Scenario 2 occurred at the storage units. In this instance,446

the rules held back too much water so when the peak of the storm arrived, the storage units447

overtopped. As with Case 1, the policy found by swmm mpc, was effective at practically448

eliminating flooding. This illustrates that there are conditions in which one set of simple449

rules is effective at achieving an objective and other conditions in which it is not. In Case 2,450

with less storage available, the more sophisticated, more computationally expensive control451

policy found through swmm mpc was needed to achieve the objective of minimizing flooding.452

In both Case 1 and Case 2, a major difference between the rules-based and the swmm453

mpc scenarios is the smoothness that is seen in the control policy. The swmm mpc control454

policies changes the valve position and therefore the upstream and downstream water depths455

much more abruptly than the rules-based policies. This abruptness could be smoother if the456
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Figure 7: Depth and flooding at system nodes for Case 1

time for the orifices to implement a change in setting was increased. In our demonstation457

model these times were zero meaning that the orifice settings were changed instantly.458

3.2 Computational cost of swmm mpc459

Figure 9 shows the wall-clock times for executing swmm mpc for Case 1 on a PC, an HPC,460

and GCP machines with a varying number of processing cores. The simulation had 96 con-461

trol time steps (15 minute resolution for 24 hours). If used for online MPC in a real case,462

the wall-clock time required for one time step would need to be less than the time step itself,463

otherwise, the setting for the next time step would not be determined before it would need464

to be implemented.465

The fastest wall-clock time using the PC was 89.4 minutes using eight computational466

cores (the maximum available). Therefore the time required to find the best control policy467
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Figure 8: Depth and flooding at system nodes for Case 2

23



Figure 9: Wall-clock run times for Case 1 with varying number of computational cores using
a PC and a high performance computer.

at each control time step was 0.93 minutes. In this case, the PC’s computing power was suf-468

ficient (0.93 minutes per time step compared to 15 minute time step). For the HPC, the best469

case scenario was a wall-clock time of 18.2 minutes (0.19 minutes per time step) using the470

maximum of 28 computational cores. Although the minimum wall-clock time was achieved471

using all 28 cores on the HPC, the improvement in wall-clock time when increasing the num-472

ber of cores past 16 was minimal. This is a relevant consideration when using a shared HPC473

resource where requesting more computational cores likely corresponds to a longer wait in474

the job queue.475

The wall-clock times using GCP were much lower than the PC or HPC. In the best case,476

32 vCPUs and 120 GB of RAM were used for a wall-clock time of 7.47 minutes (0.08 min-477

utes per time step). This is a 2.4x speed-up compared to the fastest run using the HPC and478

almost a 12x speed-up compared to the fastest PC run. The financial cost of renting this479

machine was $1.71 per hour. The GCP hardware is newer which may explain why the wall-480

clock time is lower even when the same number of computational cores was used.481
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3.3 Pratical considerations482

3.3.1 Computational costs483

The execution times for our example use case were viable, however, a more complex model,484

a smaller control time step, or different EA parameters (more generations or individuals per485

generation) would increase the execution time. For example, the demonstration SWMM5486

model required only one second or less to execute. The swmm mpc workflow executed that487

model thousands of times. In our cases, the model was run more than 30,000 times (24-hour488

simulation x 4 time steps per hour x 5 generations per time step x approx. 70 individuals489

per generation) therefore requiring approximately 30,000 seconds of computation time (if490

each model takes approx. 1 second to run). If a more sophisticated SWMM5 model instance491

were used, the execution time would be much higher. For example, in related research we are492

using a more complex model of the stormwater infrastructure for a neighborhood in Norfolk,493

Virginia that requires close to 60 seconds to execute for a 24-hour simulation time period.494

The wall-clock time for swmm mpc for this more complex model would increase by around495

a factor of 60 compared to the simple cases demonstrated here. Assuming a linear increase,496

the wall-clock time would be 55.8 minutes/time step using the PC, thus rendering it unfea-497

sible for running on a PC. Again assuming linear scaling, using 32 cores on GCP, the same498

simulation would execute at a rate of 4.8 minutes/time step. Using this setup, the wall-clock499

time for a 24-hour simulation with a time step of 15 minutes would be approximately 7.68500

hours.501

Another factor to consider for practical use of swmm mpc is the control horizon and the502

number of control structures whose policies will be found using swmm mpc. These two pa-503

rameters determine the size of the overall control policy and therefore the solution space504

that the EA will be searching. In our example use case, the control policy was a vector of505

eight integers between 0 and 10. Therefore, there were 118 possible solutions. This solution506

space, already large, would double if the control time step were 7.5 minutes instead of 15, or507

if the control horizon were two hours instead of one. A larger solution space would result in508

a larger computation time to reach an effective solution.509
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Given the computational cost of the current swmm mpc approach, the required com-510

plexity (and thus the wall-clock time) of the process model is an important consideration.511

A scenario with a simple process model (approx. 1 second wall-clock time) can be feasibly512

executed with just a PC, as shown in the system demonstration. However, a simple model513

may not represent complex urban drainage systems well enough to produce an effective con-514

trol policy. Defining what level of detail is sufficient in the process model may be difficult,515

however, as it may depend on the objective of the modeling, a certain storm event, or the516

system itself. There is a tradeoff among 1) model complexity, 2) model runtime, and 3) the517

model’s ability to effectively simulate the relevant parts of the system. This tradeoff is very518

relevant to the use of process models in a receding control horizon approach such as MPC519

and needs further research.520

If a more complex model is needed, municipalities or others needing cloud-based resources521

to run swmm mpc must consider the financial cost of renting a machine. Using GCP, the522

cost of finding the control policy for the 24-hour time span in Case 1 in our system demon-523

stration was very low, $0.21. This was, however, for one simple case. The cost would be524

higher with more complex scenarios such as a more complex model, a shorter time step, or525

more controls. If we assume the use of a more complex model, which takes 60 seconds to526

run, would increase running time by a factor of 60, that would also increase the cost by a527

factor of 60 to $12.60. However, the system would not only run if there were a storm in the528

forecast.529

Given the computational cost of running the evolutionary algorithm, other, more efficient530

alternatives should be explored in future research. One possible alternative that is reinforce-531

ment learning (Kaelbling et al., 1996). This approach may be able to converge to a solution532

more quickly than an evolutionary algorithm and thus reduce runtimes. Another future im-533

provement could be adding a penalty to changing actuator states and/or using another dy-534

namic optimizer to have a less erratic behavior in the actuators.535
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3.3.2 Data and modeling uncertainty536

The current design of swmm mpc does not take into account the uncertainties in the system537

states,the forecast data and the process model. Because the SWMM5 engine is used to sim-538

ulate both the urban drainage system and the process model, the process model assumes 1)539

perfect knowledge of the urban drainage system states, 2) perfect knowledge of future dis-540

turbances, and 3) perfect modeling of the urban drainage system. In a real implementation,541

there would be significant uncertainties in each of these aspects. In a real implementation,542

knowledge of the system states is available only from a limited number of sensors in the sys-543

tem. This data, limited in spatial and temporal resolution, would need to be interpolated,544

and likely extrapolated, to set the all the states in the system. More work will need to be545

done to investigate ways of incorporating sensor values to set the process model’s initial con-546

ditions. Additionally, in the current case, the future disturbances (i.e., primarily rainfall) are547

known perfectly, when in reality, there is a large amount of uncertainty involved with fore-548

casting such disturbances (see for example, Hong and Pai (2007), Valverde Ramı́rez et al.549

(2005), and Bellon and Austin (1984) regarding uncertainty in forecasting rainfall).550

In addition to data uncertainties seen in reality, swmm mpc does not currently consider551

gaps between the simulated behavior through the SWMM5 process model and the actual be-552

havior of the urban drainage system, but assumes that simulation and reality are the same.553

In actuality, the gap between simulation and reality in urban drainage systems can be sig-554

nificant (see for example Mark et al. (2004)). On a related note, the ability for swmm mpc555

to find a control policy that is effective for the urban drainage system is directly related to556

how well the process model represents the system. Given the simulation and data gaps seen557

in reality, the simulated results through policies found by swmm mpc should be considered558

as the best case scenario and if the same policies were used in practice, any effects should be559

expected to be seen to a lesser extent. Further research is needed to determine the degree to560

which the results from the policies implemented in reality will differ compared to the simula-561

tion results.562
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4 Conclusions563

A free and open-source software package, swmm mpc, was developed which computes a con-564

trol policy for controls within an urban drainage system model. The widely-used United565

States Environmental Protection Agency Stormwater Management Model Version 5 (SWMM5)566

is used to simulate the urban drainage system and the process model. A third-party Python567

library, pyswmm, is a critical component of the swmm mpc workflow allowing a SWMM5568

model to be run step-by-step in a Python environment. An evolutionary algorithm was used569

to find an effective control policy at each time step. When tested using a simple SWMM5570

model, the swmm mpc software was able to produce control policies that met objectives in-571

cluding minimizing flooding and minimizing deviation from target water levels at certain572

nodes in the system.573

swmm mpc leverages parallel computing to run the computationally expensive evolution-574

ary algorithm more quickly. The wall-clock time for a simple SWMM5 model for a 24-hour575

simulation was reduced from 139 minutes to 89.4 minutes when the computational cores on a576

desktop PC were increased from two to eight. The wall-clock time was reduced even further577

to 18.2 minutes on a 28-core high-performance computer and to 7.47 minutes on a 32-core578

machine rented through the Google Cloud Platform. Parallel computing makes swmm mpc579

feasible for use in real-time control with complex process models.580

As the average storm intensity is projected to increase, and sea levels are expected to581

continue to rise, cities globally and especially on the coasts, can expect more flood condi-582

tions. Active control of urban drainage systems may be one of an array of approaches that583

can be used to confronting these challenges. The swmm mpc software we have developed can584

be used, built-from, and improved upon as a tool to assist decision-makers and researchers in585

finding effective control policies for urban drainage systems.586
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6 Software Availability595

The swmm mpc software is open-source and available for use and improvement on GitHub596

at https://github.com/UVAdMIST/swmm mpc (note to reviewers/editor - once revisions597

are complete, we will make a release inf the repository and include a DOI in this section). A598

Docker image of swmm mpc is also available at https://hub.docker.com/r/jsadler2/swmm599

mpc/. The demonstration model will also be available on HydroShare (Sadler, 2018).600
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